871 research outputs found

    Influenza Will Not Miss Opportunities

    Get PDF

    Non-Gaussian Velocity Distributions in Optical Lattices

    Full text link
    We present a detailed experimental study of the velocity distribution of atoms cooled in an optical lattice. Our results are supported by full-quantum numerical simulations. Even though the Sisyphus effect, the responsible cooling mechanism, has been used extensively in many cold atom experiments, no detailed study of the velocity distribution has been reported previously. For the experimental as well as for the numerical investigation, it turns out that a Gaussian function is not the one that best reproduce the data for all parameters. We also fit the data to alternative functions, such as Lorentzians, Tsallis functions and double Gaussians. In particular, a double Gaussian provides a more precise fitting to our results.Comment: Final published version with 12 pages and 12 figure

    Vérification de propriétés temporelles à la volée

    Get PDF
    Colloque avec actes et comité de lecture.De plus en plus de systèmes intègrent des contraintes temporelles dans leur spécification. Il est important de pouvoir vérifier qu'une ou plusieurs propriétés dés irées sont bien respectées. Néanmoins, cette vérification est confrontée au problème de l'explosion combinatoire engendrée par les approches exhaustives. C'est dans le but d'éviter cette explosion et donc de pouvoir traiter des problèmes plus complexes que nous présentons dans cet article une méthode de vérification à la volée de propriétés temporelles

    Feasibility of home-based ELISA capillary blood self-testing for anti-SARS-CoV-2 antibodies.

    Get PDF
    Objectives Serological assays for the presence of anti-SARS-CoV-2 antibodies are crucially needed for research and monitoring of the SARS-CoV-2 pandemic. Antibodies are reliability detected in capillary blood, a minimally invasive and cost-effective alternative to venous blood testing. However, there is a limited knowledge on feasibility of capillary blood self-sampling. This study compared the feasibility of capillary blood self-testing in people aged less than 65 vs. people aged 65 or more. A secondary aim was to investigate the performance of the Hem-Col® (no additive) device compared to venous blood testing. Design and methods Data were collected in a prospective study in Switzerland (n = 106). Capillary blood was collected using the Hem-Col® (no additive) device. Feasibility was assessed using 1) collecting the recommended amount of capillary blood and 2) achieving all steps of capillary blood collection. A sample of 5 ml of venous blood was also collected. Results For the primary objective, 86.2%/62.1% of patients aged less than 65 collected the recommended amount of capillary blood/achieved all steps vs. 62.5%/39.6% of patients aged 65 or more (p = .006/p = .022). For the secondary objective, the correlation between capillary and venous blood was r = 0.992 and kappa = 1. Conclusions Capillary blood self-testing appeared as a feasible and reliable alternative to venous blood testing. Such alternative would improve access to serological testing and spare health care resources. However, the difference between age groups should be considered when using self-sampling devices. Help should be developed for older people, such as phone counseling or encouraging asking younger family members for help

    Impact of symmetry breaking on the Flame Transfer Function of a laminar premixed flame

    Get PDF
    This work presents a numerical study of the acoustic response of a laminar flame with tunable asymmetry. A V-shaped premixed flame is stabilised in the wake of a cylindrical flame holder that can be rotated. The configuration is symmetric when the flame holder is fixed but increasing its rotation rate breaks the symmetry of the flow. This configuration is submitted to acoustic forcing to measure the effect of rotation of the flame holder on the Flame Transfer Functions. It appears that the asymmetry of the two flame branches changes their respective time delays, resulting in interference in the global unsteady heat release rate fluctuations. Consequently, the Flame Transfer Function exhibits dips and bumps, which are studied via laminar Direct Numerical Simulation. Potential applications for the control of combustion instabilities are discussed

    Impact of symmetry breaking on the Flame Transfer Function of a laminar premixed flame

    Get PDF
    This work presents a numerical study of the acoustic response of a laminar flame with tunable asymmetry. A V-shaped premixed flame is stabilised in the wake of a cylindrical flame holder that can be rotated. The configuration is symmetric when the flame holder is fixed but increasing its rotation rate breaks the symmetry of the flow. This configuration is submitted to acoustic forcing to measure the effect of rotation of the flame holder on the Flame Transfer Functions. It appears that the asymmetry of the two flame branches changes their respective time delays, resulting in interference in the global unsteady heat release rate fluctuations. Consequently, the Flame Transfer Function exhibits dips and bumps, which are studied via laminar Direct Numerical Simulation. Potential applications for the control of combustion instabilities are discussed
    • …
    corecore